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Abstract-The time-harmonic problem of determining stresses around two parallel cracks in an
infinite orthotropic plane is studied. Incident stress waves impinge on the two cracks normal to their
surfaces. The Fourier transform technique is used to reduce the boundary conditions to four
simultaneous integral equations which are then solved by expanding the differences in the crack
surface displacements in a series. The unknown coefficients in the series are calculated using the
Schmidt method. Numerical calculations are carried out for the dynamic stress intensity factors in
a boron--epoxy composite material, a carbon fiber reinforced plastic, a modulite II graphite-epoxy
composite and an isotropic material. © 1997 Elsevier Science Ltd. All rights reserved.

I. INTRODUCTION

The dynamic problem for a finite crack was first investigated by Loeber and Sih (1968).
They obtained the stress intensity factors around a crack during the passage of a time­
harmonic antiplane shear wave. Later, they also solved the crack problem for a compression
wave and a vertically polarized shear wave (Sih and Loeber, 1969). Using a somewhat
different approach, Mal (1970) treated the same problems independently. Following these
pioneering works, solutions have been obtained for numerous time-harmonic problems as
well as transient problems, as shown in the recently published Stress Intensity Factors
Handbook (Murakami, 1987). According to the handbook, the peak value of the dynamic
stress intensity factor Kf'ak is generally about 1.20-1.60 times as large as that of the
corresponding static value Kftatic. However, two cases exist in which the Kfak / Kftatic ratio
takes on a considerably larger value. These are (i) the time-harmonic problem for a finite
crack in a half-plane where the plane surface is parallel to the crack (Keer et al., 1984) and
(ii) the time-harmonic problem for two parallel cracks in an infinite plane subjected to
waves that impinge perpendicular to the cracks (Takakuda, 1982). For the former, the
Kfak/K~tatic ratio is 4.12 for d/a = 0.8, with 2a being the crack length and dbeing the depth
beneath the free surface. For the latter, the ratio is 4.16 for h/a = 1.0, with h being the
distance between the two parallel cracks.

Recently, composite materials, which are essentially orthotropic materials, have
attracted attention due to their high strength and relative lightness. However, these materials
can be weakened by cracks that appear at the interfaces between the fiber and the matrix.
Consequently, cracked composite materials can be loaded dynamically. These dynamic
stresses in an infinite orthotropic medium weakened by a crack were determined by Ohyoshi
(1973) for the time-harmonic problem, and by Kassir and Bandyopadhyay (1983) for the
transient problem. In these solutions, the Kfeak / Kr

atic ratio falls between 1.20 and 1.30.
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Fig. I. Geometry and coordinate system.

As mentioned above, the peak value of the dynamic stress intensity factors around a
crack in a half-plane is very large for cases in which the crack is situated parallel to the
stress-free surface. However, this problem may not be realistic because external tensile force
rarely acts on a plane surface. Large KfakIK:tatic ratios are also seen in two parallel cracks
during the passage oftime-harmonic stress waves, although the ratio for the corresponding
transient problem is only about 1.3 (Hou, 1995). Cracks ordinarily occur with these surfaces
intersecting perpendicular to the line along which the external force acts. Therefore, it is of
practical interest to solve the problem for the stress intensity factors around two parallel
cracks in an orthotropic plane subjected to time-harmonic stress waves so as to avoid
catastrophic fractures in composite materials.

In the present paper, dynamic stresses have been determined in an infinite orthotropic
plane containing two parallel cracks. Time-harmonic stresses pass perpendicularly through
the material to the surface ofeach crack. The Fourier transform technique is used to reduce
the mixed boundary value conditions to a set of dual integral equations. The equations are
solved by expanding the differences in the crack surface displacements in a series. The
unknown coefficients in the series are then determined using the Schmidt method (Hou,
1976) and the values of the dynamic stress intensity factors are calculated numerically for
several composite materials.

2. FUNDAMENTAL EQUATIONS

Consider a crack located on the x-axis from - a to +a, with respect to the rectangular
coordinates (x,y), and another along the x-axis from -b to +b at y = -h, as shown in
Fig. l. The problem is first formulated for the generalized plane stress condition. For
convenience, we refer to -h ;;;; y;;;; 0 as layer CD, 0;;;; y as upper half-plane @, and y ;;;; -h
as lower half-plane (D.

For an orthotropic medium, the equations of motion are given as follows (from Kassir
and Bandyopadhyay, 1983),

with

CII o2 uloX2+o2 uloy2+ (l +CI2) o2 vl(oxoy) = (l/c?) o2 ulot2

C22 o2 vloy2+o2vloX2+ (l +CI2) o2 ul(oxoy) = (l/c?) o2vlot2 (l)

(2)

where u and v are defined as the x and y components of the displacement, respectively, Ex
and Ey are Young's modulus, J.lxy is the modulus of rigidity, vxy is Poisson's ratio, p is the
density of the material and t is time.

The stresses are given as
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(Jx//lXY = CII OU/OX+C12 Ov/oy, (Jy//lxy = Cl2 OU/OX+C22 Ov/oy,

'rxy//lXY = Ou/oy+Ov/Ox.

3. BOUNDARY CONDITIONS

The incident displacement waves are assumed to be

v(r) = voexp[i{wY/(CI~)+wt}]
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(3)

(4)

where Vo is a constant and w is the circular frequency. Substituting eqn (4) into eqn (3)
results in

(J~) = PO(CJ2/C22) exp [i{wY/(Ct~)+wt}]

(J~) = Po exp [i{WY/(CI~)+wt}]

(5)

with

(6)

For convenience, the time-factor exp(iwt) is dropped hereafter. If only the stress intensity
factors are considered, the problem can be solved using the following boundary conditions:

(Jyl = (Jy2' 'rxyl = 'rxy2 aty = 0, Ixl < w

(Jyl = (J)'3' 'rxyl = 'rxy3 aty = -h, Ixl < w

(Jyl = (Jy2 = -Po, 'rxyl = 'rxy2 = 0 aty = 0, Ixl < a

UI = U2' VI = V2 at Y = 0, Ixl > a

(Jyl = (Jy3 = -Po exp [- i{wh/(c,~))], 'rxyl = 'rxy3 = 0 at y = -h,

U1 =U3' V\=V3 aty=-h, Ixl>b

(7)

(8)

(9a)

(9b)

Ixl < b (lOa)

(lOb)

where the variables with the subscript i = I are those for layer CD, i = 2 for upper half­
plane @, and i = 3 for lower half-plane 0. It is assumed that the faces of the cracks do
not come into contact during vibration.

4. ANALYSIS

To find the solution, we introduce the Fourier transforms defined by

fie) = f~oof(X) exp(iex) dx

fix) = (I/2n) f~ooJte) exp( - iex) de·

Applying eqn (lla) to eqn (I) results in

(lla)

(lIb)
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p = e(2cl2 + d2 - CII cn)/cn + (1 + Cn)w2/(Cn C;)

q = (~2Cll-w2/c~)(~2_w2/c;)/Cn.

(12)

(13)

The characteristic equation of eqn (12) is

(14)

The four roots of A], ),2, A3, A4 have the following different forms depending on the values
of p and q.

For p2_4q ~ 0 and - p+ (p2_4q)1!2 ~ 0

(15a)

with

(l5h)

(15c)

For y-4q ~ 0 and _p_(p2_4q)I/2 ~ 0

(16a)

with

Al = (h/2)1/2 {cos(8/2) +isin(8/2)}

1.3 = (Y3/2)1/2{cos(8/2)-isin(8/2)}

with

For all cases, A2 and A4 are given as

1.2 = -)"

).4 = -).3'

(16h)

(l6c)

(17a)

(17h)

(18)
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Then, the solutions of eqn (l2) have the following forms for layer CD, upper half-plane @,

and lower half-plane Q), respectively:

ill = Al cosh(cxly)+BI cosh(/3ly)+CI sinh(cxIy)+D, sinh(/3,y)

v, = E I cosh(cx,y)+F, cosh(/3ly)+G 1 sinh(cx,y)+HI sinh(/31Y) (19)

il2 = A2exp(cx2Y) + B2exp(/32Y)

V2 = C2exp(cx2Y) + D2exp(/32Y)

il3 = A 3 exp(cx3y)+B3 exp(/33Y)

V3 = C3exp(cx3y)+D3exp(/33Y)

where A" B" ... , D3 are the unknown coefficients, and cx" /3" cx2, /32, CX3, /33 are

(20)

(21)

Branches of CX2, /32 for upper half-plane @, and those of cx3, /33 for lower half-plane Q) must
be selected to satisfy the conditions under which U2, V2, U3, V3 are zero at an infinite distance
from the cracks and that only outgoing waves exist. The results are not affected even if
branches of cx" /31 for layer CD are replaced by Ab A4' respectively.

Substituting eqns (l9), (20), (21) into eqn (1) in the Fourier domain we obtain

(A1,C,) = iml(G"Ed, (B"D,) = im,(H,,Fd, A2 = im2C2

B2 = in2D2, A 3 = im3C3, B3 = in3D3 (23)

with

mi = (l + e12)cxi~/(cx; +w2Ie; - eel,)

ni = (1+e12)/3i~/(/3;+w2/e;-~2c'1)' (24)

Therefore, the displacements and stresses are now expressed by the unknowns E" FI , G"
H" C2, D2, C3, D3• By applying eqns (7) and (8), E" FI , G" HI can now be represented as

Edm, = (C2Im2)!' (~) + (D2In2)!2 (~) + (C3ImJ!3 (~) + (D3In3)!4(~)

F IIn, = (C2Im2)!5(~) + (D2In2)!6(~) + (C3Im3)!7(~) + (D3In 3)!s (~)

Gllm 1 = (C2Im2)!9(~) + (D2In2)!'O (~) + (C3Im3)!ll (~) + D3In3)!d~)

Hdn, = (C2Im2)!13(~)+(D2In2)!14(~)+(C3Im3)!'5(O+(D3In3)!16(~) (25)

wherej;(~),h(~), .. . ,j;6W are given in Appendix A. Equations (23) and (25) show that
the Fourier-transformed stresses and displacements can be expressed by coefficients C2, D 2,

C3, D3•

Here, the remaining boundary conditions are given by eqns (9a), (9b), (lOa), (lOb).
To satisfy eqns (9b) and (lOb), we expand the differences in the displacements at Y = 0 as
follows

00

n(ul a -U2a) = L an sin {2n sin-I (xla)} (0 ~ Ixl < a)
n=l

= 0 (a < Ixl < (0) (26)
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00

n(V)a-VZa) = L bncos{(2n-l)sin-l(x/a)} (0 ~ Ixl < a)
n=1

= 0 (a < Ixl < (0) (27)

and those at y = -h by

00

n(ulb - U3b) = L Cn sin {2n sin -I (x/b)} (0 ~ Ixl < b)
n=1

=0 (b<lxl<oo)

00

n(vlb-v3b) = L dncos {(2n-l) sin-I (x/b)} (0 ~ Ixl < b)
n=1

= 0 (b < Ixl < (0)

(28)

(29)

where am bm em dn are the unknown coefficients to be determined, and the subscripts a and
b are the values at y = 0 and y = -h, respectively. The Fourier transforms of eqns (26),
(27), (28), (29) are

00

(-O(Ula-UZa) = L an{2n/~}Jzn(a~)
n=1

00

(Vla-VZa) = L bn{(2n-I)/~}J(Zn_l)(a~)
n=1

00

( - i)(U)b - U3b) = L Cn{2ng}Jzn(b~)
n=1

00

(Vlb- V3b) = L dn{(2n-I)/~}J(Zn-I)(b~)
n=1

where In(~) is the Bessel function.
The left-hand sides in eqn (30) can now be expressed as

(-i)(Ula-UZa) = (-i)(iG)MI/m l +iHIN)/n l -iCzMz/mz -iDzNz/nz)

(Vla-VZa) = F I +H) -Cz-Dz

(-i)(Ulb-U3b) = (-i){iE)M1sinh( -rx.h)/m) + iF) N 1 sinh( -P1h)/nl

+ iG 1M I cosh( - rxl h)/m l + iH, N 1 cosh( - PI h)/n)

-iC3M 3exp( -rx3h)/m3 -iD3N 3exp( -P3h)/n3}

(Vlb -V3b) = E 1M) cosh( - rx1h)/ml + iFIN) cosh( - P1h)/nl

+G) sinh(-rxlh)+H) sinh(-Plh)

- C3 exp( -rx3h) - iD3exp( - P3h)

with

Applying eqns (25), (30) and (31), coefficients Cz, Dz, C3, D 3 are shown by

(30)

(31)

(32)
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C2/m2

D2/n2

C3/m3

D3/n3

00

~ an(2n/~)J2n(a~)
n=l

H II H 21 H 31 H 41 00

H I2 H 22 H 32 H 42
~ bn{(2n-l)/~}J(2n_1)(a~)

n=l

H 13 H 23 H 33 H 43 00

~ Cn(2n/~)J2n(b~)
H I4 H 24 H 34 H 44 n=)

00

~ dn{(2n-l)/¢}J(2n_l)(bO
n=l

(33)

where Hij is the cofactor of the element hij of the determinant L11

h11 h 12 ... h 14

L1 1 =
h21

(34)

h41 ... . .. h44

with

hll = MJ9(~)+NJ13(~)-M2' h12 = MJ10(¢)+NJ14(¢)-N2

h13 = MJII(¢)+NJ15(~)' hl4 = MJ12(~)+N1fI6(~)

h21 = mJI(¢)+nJ5W- m2, h22 = mJ2(¢)+nJ6G)-n2

h23 = mJ3(¢)+nJ7(¢)' h24 = mJ4(¢)+nJs(¢)

h31 = M J9(¢) cosh( -txlh) +NJdO cosh( -P,h)

+MJI (¢) sinh( -tx1h) +NJ5(¢) sinh( - Plh)

h32 = M JIO(¢) cosh( -txlh)+NJI4(¢) cosh( -Pth)

+MJ2(¢) sinh( -tx1h) +NJ6(¢) sinh( - Plh)

h33 = M JII (¢) cosh( -tx lh)+NJ15(¢) cosh( -P1h)

+MJ3(¢) sinh( -txlh) +NJ7(~)sinh( - P1h) -M1exp( -txlh)

h34 = M J12(¢)cosh( -tx1h)+NJ16(¢) cosh( - P1h)

+Md4W sinh( -txlh)+NJs(¢) sinh( -P,h) -M1exp( -Plh)

h41 = mJI (¢) cosh( -tx1h) +nJ5(¢) cosh( - P1h)

+mJ9(¢) sinh( -tx lh) + nJ13(¢) sinh( - Plh)

h42 = mJ2(¢)cosh( -iXlh)+nJ6(¢)cosh( -Plh)

+mJlO(¢) sinh( -txt h) +nJ14(¢) sinh( - PI h)

h43 = mJ3(¢) cosh( -txl h) +nJ'7(¢) cosh( - P1h)

+mJII (¢) sinh( - txlh) +nJ15(¢) sinh( - PI h) -ml exp( -tx,h)

h44 = mJ1 (¢) cosh( -tx1h) +nJsW cosh( -P1 h)

+mJI2(¢) sinh( -txlh) +nJI6(¢) sinh( - P1h) -n1exp( - Plh). (35)

Substituting eqn (33) into the stress expressions and applying eqn (11 b), we obtain
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+J
1
bnC2n-l)100

{QzW/OJzn-lCae) coscex) de

+n~l cn2n IX! {Q3Wle}JZnCbe)coscex) de

+n~l dnC2n-l)100

{Q4Wle}JZn - 1Cbe) coscex)de

1t:'xyZa = JI an2n IX! {Q5Wle}JZnCae) sinCex) de

+Jl bnC2n-l) f' {Q6Ce)/e}Jzn_lCae)sinC~x)de

+ Jl cn2n IX) {Q7Ce)/~}JZnCb~) sinCex) de

+n~l dnC2n-l) LX) {Q8Cwe}Jzn_ICbe)sinC~x)d~

1t:(Jy3b = n~l an2n100

{Q9W/~}JZnCa~)coscex) de

+ n~l bnC2n-l) LX! {QlOWle}JZn-l Cae) cosC~x) d~

+ n~l cn2n IX! {Qll C~)/OJznCbe)coscex) de

+n~l dnC2n-l) LX! {QlzW/OJ2n-1Cbe)coscex) de

+ n~1 bnC2n-l) f' {Q14CWOJZn-1Ca~) sinC~x) d~

+ntl cn2n LX! {Q,5Ce)/e}JznCbe) sinCex)de

+n~l dnC2n-l) 1"" {Q16W/~}Jzn-1Cb~)sinCex)de
(36)

where QICe), QzCe), ... , Q16Ce) are given in Appendix B.
Now, the remaining boundary conditions are eqns C9a) and (lOa), and these are

reduced to the forms
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ex. -x;.. ex; XJ

I anKna(x) + I bnL na (x) + I cnMna(x) + I dnNna(x) = - U(x)
n=! n=l n=l n=!

1153

with

XJ X; oc X

I an Ona (x) + I bnPna(x) + I cnQnaCx) + I dnRna(x) = - Vex) (0 ~ X < a) (37a)
n=! n=1 n=l n=1

x X:f.:; x

I anKnb(x) + I bnLnb(x) + I CnM nh (x) + I dnNnh(x) = - W(x)
n=l n=l n=l n=1

x x x oc

I an Onh (x) + I bnPnb(x) + I CnQnh(X) + I dnRnh(x) = -Z(x) (0 ~ x < b)(37b)
n=) n=l n=1 n=l

U(x) = po(a-x)I/2, Vex) = 0

W(x) = Po(b - x) 1/2 exp {- iwh/(cj J cn>}, Z(x) = 0 (38)

and KnaCx), LnaCx), ... , Rnb(x) are shown in Appendix C. Equation (37) can now be solved
for coefficients am bm Co' dn using the Schmidt method (l tou, 1976) as described in Appendix
D.

5. STRESS INTENSITY FACTORS

Stresses at y = 0 and at y = -h are given by eqn (36). The singularities in the stress
field result from the relationships

(39)

Then, we can easily define stress intensity factors Kim K2m K 1h, K2h as folIows

%

= I b.(2n-l)( -1)"Q~/(na)1/2
n=l

%

= I an 2n( -1)"Q~/(na)12
n=1

K 1h = lim {2n(x-bW i2
0'dh

x--+h+

'%

= I dn (2n-l)( -1)"QU(nb)12
n=l

'x

= I cn 2n( -1)"QTs/(nW 2
n=l

where QL Qt QT2' QTs are given by

(40)
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(41)

with ~L being a large value of~. Expressions Qf cannot be expressed in terms ofa formula
and must thus be obtain numerically, as seen in the next section.

6. NUMERICAL EXAMPLES AND RESULTS

Numerical calculations are carried out for a boron-epoxy composite, a carbon fiber
reinforced plastic, a modulite II graphite-epoxy composite and an isotropic material. The
material constants are shown in Table 1. In the table, the fourth set of elastic constants are
not those for the specific material. These are only used to obtain the numerical results for
an isotropic material. The infinite integrals in functions knaCx), lna(x), ... , qnh(X), rnh(x) in
eqn (C.3) are calculated taking the upper limit of integration up to (~a) = 10.0, 12.0, 13.0
and 40.0 for the boron-epoxy composite, carbon fiber reinforced plastic, modulite II
graphite-epoxy composite and isotropic material, respectively.

In Table 2, the values of )'] and Ie} are given for wale, = 1.1. From the table, the critical
values of ~ are known at which the roots of eqn (14) change types. The values of

Table I. Material constants

Material E, (Nlm') E, (N/m') II" (N/m') \\-..

Boron--epoxy composite 224.06 x 10" 12.69 X 10" 4.43 X 10" 0.256
Carbon fiber reinforced 145.0 x 10" 9.6xI0" 4.8 x 109 0.23
plastic
Modulite II graphite--epoxy 158.0x 109 15.3 x 10" 5.52 X 109 0.34
composite
Isotropic material 100.0 x ]0" 100.0x109 37.5 X 10" 113

Table 2. Values of ;., and i., for wa/e, = 1.1

Material

Boron--epoxy
composite

Carbon fiber
reinforced
plastic

Modulite II
graphite­
epoxy
composite

Isotropic
material
(Ey/ Ex = 1.0, v" = 1/3)

(~a)

0.12
0.14
0.16
1.08
1.10
l.l2
0.18
0.20
0.22
1.08
l.l0
1.12
0.18
0.20
0.22
1.08
1.10
1.12
0.68
0.70
0.72
1.08
J.l0
1.12
l.l4

0.0 +0.61480i
0.0 +0.47968 i
0.20298 +0.0 i
7.48993 +0.0 i
7.63188+0.0 i
7.77376+0.0 i
0.0 +0.48650 i
0.0 +0.17558i
0.45152+0.0 i
5.70220+0.0 i
5.81185+0.0 i
5.92413+0.0 i
0.0 +0.50395 i
0.0 +0.29901 i
0.34299+0.0 i
5.48477+0.0 i
5.59053 + 0.0 i
5.69622+0.0 i
0.0 +0.19391 i
0.0 +0.13063i
0.05742+0.0 i
0.39436+0.0 i
0.25880 + 0.0 i
0.32395 + 0.25587 i
0.40571 +0.30437 i

(i.,a)

0.0 +0.75320 i
0.0 +0.67943 i
0.0 + 0.66528 i
0.0 +0.13178 i
0.0 +0.04231 i
0.11863+0.0i
0.0 +0.80466 i
0.0 +0.79469 i
0.0 +0.78792 i
0.0 +0.15895 i
0.0 +0.05103 i
0.14308+0.0 i
0.0 +0.73146 i
0.0 +0.70324 i
0.0 +0.68900 i
0.0 +0.13649i
0.0 +0.04382 i
0.12286+0.0 i
0.0 +1.01059i
0.0 +1.00111 i
0.0 +099086 i
0.0 +0.45062 i
0.0 +0.22771 i
0.32395 - 0.25587 i
0.40571-0.30437 i
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Table 3. Values of Q;(-;a)/(-;a) for wa/c, = l.l, h/a = 1.0, b/a = 1.0

Material (-;a) Qi-;a)/(-;a) Q,(-;a)/(-;a) Qd-;a)/(-;a) Q15(-;a)/(-;a)

Boron-epoxy 9.92 0.34487 x 10' 0.14579 x 10' -0.34487 x 10' -0.14579 X 10'
composite 9.94 0.34488 x 10' 0.14579x 10' -0.34488 x 10' -0.14579x 10'

9.96 0.34489 x 10' 0.14579 X 10' ~0.34489 X 10' -0.14579x 10'
9.98 0.34490 x 10' 0.14579 X 10' -0.34490 X 10' -0.14579x 10'

10.00 0.34491 X 10' 0.14580 X 10' -0.34491 X 10' -0.14580 X 10'
Carbon fiber 11.92 0.30179 x 10' 0.11779 X 10' -0.30179 X 10' -0.11779x 10'

reinforced 11.94 0.30179 x 10' 0.11779x 10' -0.30179 x 10' -0.11779x 10'
plastic 11.96 0.30180 x 10' 0.11779xIO' -0.30180 x 10' -0.11779x 10'

11.98 0.30180 x 10' 0.11779 X 10' -0.30180 X 10' -0.11779x 10'
12.00 0.30181 x 10' 0.11779 X 10' -0.30181 X 10' -0.11779x 10'

Modulite II 12.92 0.41215 x 10' 0.13291 X 10' -0.41215 X 10' -0.13291 X 10'
graphite- 12.94 0.41216 x 10' 0.13291 X 10' -0.41216 X 10' -0.13291 X 10'

epoxy
composite 12.96 0.41216 x 10' 0.13291 X 10' -0.41216 X 10' -0.13291 X 10'

12.98 0.41217 x 10' 0.13291 X 10' -0.41217 X 10' -0.13291 X 10'
13.00 0.41217 x 10' 0.13291 X 10' ~0.41217 X 10' -0.13291 X 10'

Isotropic 39.92 0.21287 x 10' 0.21313 X 10' ~0.21287 X 10' -0.21313 X 10'
material 39.94 0.21287 x 102 0.21313 X 10' -0.21287 X 10' -0.21313x 10'
(Ey/Ex = 1.0, 39.96 0.21287 x 10' 0.21313 X 10' - 0.21287 X 10' -0.21313 X 10'

v" = 1/3)
39.98 0.21287 x 10' 0.21313 X 10' -0.21287 X 10' -0.21313 X 10'
40.00 0.21287 X 10' 0.21313 X 10' -0.21287 X 10' -0.21313 X 10'

Qf{ = Q;(~a)j(~a)} are shown in Table 3 for waje, = 1.1, hja = 1.0, bja = 1.0. From the
table, it is obvious that the values of Q;(~a)j(~a) asymptotically approach the constants for
i = 2,5, 12, 15. Values of Qi(~a)j(~a) for i = 3, 4, 7, 8, 9, 10, 13, 14 are not shown in the
tables. However, it has been verified that these values decay rapidly when (~a) increases.
Thus, the semi-infinite integrals in eqn (C.3) can be easily evaluated using Filon's method
(Amemiya and Taguchi, 1969).

The infinite series in eqn (37) can be truncated by summing from n = 1 to 7. In Table
4, the values for lhs and those for rhs in eqn (37a) are shown for the boron-epoxy composite
with waje, = 1.1, hja = 1.0, bla = 1.0. Table 5 shows the values in eqn (37b) for the same
case. From the tables, it can be seen that the Schmidt method has been applied satisfactorily.

Table 4. Values of Ihs and rhs in eqn (37a) for boron-epoxy composite (wa/c, = l.l. hla = 1.0. b/a = 1.0)

x/a

0.00010
0.07143
0.50000
0.92857
0.99990

7

I {anKn,,(x/a)+ h"Ln,,(x/a)
rt=]

+ c"M"" (xla) +d"N",,(x/a)} /(p"yIa)

-0.99911 +0.00001 i
-0.96361 +0.00000 i
-0.70713+0.00001 i
-0.26726+0.00000 i
- 0.0 I009 + 0.00003 i

I {anO""(x/a)+h"P,,,,(x/a)
11=\

+c"Q",,(xla) + d"Rn,,(x/a): /(p"J~)

0.00000 +0.00000 i
0.00000+0.00000 i

-0.00000+0.00000 i
-0.00000+0.00000 i
-0.00001-0.00000 i

- U(xla)!(p"yIa)

-0.99995+0.00000 i
-0.96362+0.00000 i
-0.70711 +0.00000 i
-0.26720+0.00000 i
-0.01000+0.00000 i

Table 5. Values of Ihs and rhs in eqn (37b) for boron-epoxy composite (wa/c, = 1. 1, h/a = 1.0, b!a = 1.0)

x/a

0.00010
0.07143
0.50000
0.92857
0.99990

7

I {a"Knh(x/a) + b"Lnh(x/a)
n=1

+C,,M"h(x!a) +dnNnh(x/a) ) I(p"yIa)

-0.79538+0.60604 i
-0.76647 +0.58404 i
-0.56240+0.42859 i
-0.21258+0.16198 i
-0.00786+0.00612 i

J

I {anO"h(x!a) + b"Pnh(x/a)
n=!

+c"Q"h(xla) + d"R"h(x/a)) /(p"yIa)

0.00000 + 0.00000 i
0.00000 + 0.00000 i

-0.00000-0.00000 i
0.00000+0.00000 i

-0.00001-0.00000 i

-0.79536+0.60606 i
-0.76646+0.58404 i
-0.56243+0.42857 i
-0.21258+0.16198 i
-0.00795+0.00606 i
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Fig. 2. Absolute values of K,u' K,,,, K'h' K'h for boron-epoxy material (bja = 1.0 and h/a = 1.0).
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Fig. 3. Absolute values of K'm K'm K'h' K'h for boron-epoxy composite material (b/a = 1.0 and
h/a = 2.0) .

The absolute values of the dynamic stress intensity factors are plotted in Figs 2-9,
where the broken straight lines indicate the corresponding static values. Numerical results
for the isotropic material with a Poisson's ratio of V r , = 113 in the plane stress condition
correspond to those for v = 0.25 in the plane strain condition. The curves for the isotropic
material with hla = 1.0 and v" = 1/3 are in good agreement with the results for v = 0.25
calculated in the plane strain condition by Takakuda (1982) using the integral equation
method. The absolute values of the K~~~kIK~t~tiC ratio and K~~ak are shown in Table 6.

It is apparent from the figures that the predominant term of the dynamic stress intensity
factor is KIa' As can be seen in Table 6, the K~~~k values are considerably larger than the
K~t~tic values.

For a value of hla smaller than 1.0, more terms are needed in order to properly apply
the Schmidt method. In such cases, an overflow occurs in the numerical computations, and
numerical results are therefore not obtainable. However, it can be inferred from Table 6
that the K~~ak /Kr~tlc ratio increases extremely as hia decreases.
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Fig. 4. Absolute values of K'a' K'm K'h' K'h for carbon fiber reinforced plastic (bja = 1.0 and
h/a = 1.0).
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Fig. 5. Absolute values of Kia. K'a. K lh• K'h for carbon fiber reinforced plastic (bla = 1.0 and
hja = 2.0).
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Fig. 6. Absolute values of Kia. K'a. K'h' K'h for modulite II graphite-epoxy composite (bja = 1.0
and hja = 1.0).
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Fig. 7. Absolute values 0f Kid' K'a> K,h• K,,, for modulite II graphite-epoxy composite (bia = 1.0
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Fig. 8. Absolute values of Kid' K,il.K ,ho K'h for isotropic material (bla = 1.0 and hla = 1.0).
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Fig. 9. Absolute values of K'a> K2a> K ,ho K'h for isotropic material (bla = 1.0 and hja = 2.0).
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Table 6. Absolute values of K~:uk IK\'::'i< and K';-;;" for alb = 1.0.

1159

Carbon fiber Modulite II
Boron--epoxy reinforced graphite--epoxy Isotropic

composite plastic composite material
-,---.._----

IK';~'kl/Kl'~Ii. hla = 1.0 3.81 3.67 3.87 4.16
IK~:ukl/Kl'~'i<)J/a = 2.0 2.82 2.64 2.78 2.70
IK~:ukl/(pu,ja) h/a = 1.0 5.40 5.25 5.47 5.70
IK~:akl/(pu~) h/a = 2.0 4.31 4.11 4.26 4.03
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APPENDIX A

a" .. . a li , bii ali· I " · Q I4
i

a~ I . a2i_ I b,! a21. I .024 I

f~('-II+M) = ll.2
G31 .a3i I b" a,,, I · °34

a4' .,. a4i_1 b4, a41+ I · G 44

for i = 1,2,3,4 and j = 1,2,3,4 (A.i)

with

(A.2)

b" = c,,(1 +( 12 )fJ,( +c"n,{J" b
"

= O. b'4 = 0

a'2 = (cl2(1+CI2)fJ,~'+c"nlfJl)sinh(-fJ,h)

b" = {c,,(1 +C'2)::tI~'+c"m,::t,}exp( -::t,h)

bJ4 = {cl2(l+cdfJl(+c"nlfJ,)exp(-fJ,h)
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with

with
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a41 = {(l+c,,)IX;~-m,~}cosh(-IX,h)

a42 = {(I + cnlP;~ -n,~} cosh( - P, h)

a4 3 = {(l+C'2)IX;~-m,~}sinh(-IX,h)

a44 = {(l+ci2lP;~-n,~}sinh(-p,h), b4, = 0, b42 = 0

b4 , = {(l+C'2)1X;~-m,~}exp(-IX,h)

b44 = ((l+c'2)p;~-n,~}exp(-p,h).

APPENDIX B

Q, (~) = H"s, +H'2S" Q,(~) = H"s, +H'2S2, Q3(O = H 31 s, +H32 s,

Q4(O = H 4,s, +H4,s" Q,(O = H"s,+H 12 s4, Q6(O = H 21 s,+Hn s4

Q7(O = H 31 s,+H"S4, Q8(~) = H 4,s,+H4,S4' Q9(~) = H 13 s,+H,4S6

Q,o(~) = H2J s s + H'4 S6, Q" (~) = H"ss + H W 56, Q,,(O = H 43 S, + H.4S6

Q13(O = H 13 s7+H,4S8, Q'4«() = H"S7+ H ,.S8, Q15(O = H J ,S7+ H 14 S8

Q'6(~) = H 4, + H 44 S8

s, = J1n(cl,~M, +c"m,IX,), s, = J1x,.(cl,~N, +cnn,p,)

s, = J1x,(M,IX, -m,O, s. = J1n(N,P, -n,O

s, = J1,y(c12~M3 +Cnm3IX,) exp( -IX,h)

S6 = J1".(c12~N3+Cnn,p,)exp(-p,h)

S7 = J1".(M3IX3 -m,~) exp( -IX,h), S8 = J1n(N3P, -n,O exp( - P3h).

APPENDIX C

Kna(x) = (x-a)' 'kna(x). Lnu(x) =(x-a)I'lnu(x)

Mna(x) = (x-a)' 'mnu(x), ,Vnu(x) = (x-a)' 'nnu(x)

Dnu(x) = (x -a)' 2onAx), Pnu(x) = (x- a) '2Pnu(x)

Qnu(x) = (x-a)' 'qnu(x), Rnu(x) =(x-a)"rnu(x)

Kn6 (x) = (x_b)' 'kn6 (x). L n6 (x) = (x-b)12In6(x)

M n6 (x) = (x-b)' 'mn6(x). N.,6(X) =(x-b)"nnh(X)

Dnh(x) = (x-b)' 'On6(X), Pn6 (x) = (x-b)"Pnh(X)

Qn6(X) = (X-b)12 qn6 (X), R"h(X) =(x-b)I'rn6(x)

knaC<:) = 0

lnu(x) = {(2n-l)/n{f {Q,(~)/~-Q~}J'n,(a~)cos(~x)d~

+ Q~(a' -x') -12 cos {(2n-l) sin-' (x/a)} ]

mnu(x) = (2n/n) f {Q,(~)/nJ'n(b~) cos(~x) d~

nnu(.<:) = {(2n-l)jnl f {Q4(~)!~}J'n_,(b~)cos(~x)d~

(A3)

(B.I)

(8.2)

(el)

(e2)
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+ Qt(a2 - x') - I' sin {2n sin - I(x/a)}]

P",,(x) = 0

qn,,(x) = (2n/n) f {Q,(,;)f()J2n(b() sin(ex) d(

rn.(x) = {(2n-I)/n) rx

{Q,(,;)/()J2n - 1(bO sin((x) d(

J"

knh(x) = (2njn) rx

{Q.<elj (}J'n(aO cos((x) d(

J"

'nh(X) = {(2n-l)jn) rx

{Q,o(,;)/(}J'n_,(a()cos(,;x)d(

J"

nnh(X) = {(2n-l)n)[f {Qde)/e-Qt,}J'n_,(bOcos«(x)d,;

+Qt,(b'-x') ,2COS((2n-l)sin'(X!b):]

+Qt,(b'-x')-' 2 sin (2nSin- ' (X!b)}]

where Qf are given by eqn (41).

APPENDIX 0

For convenience, eqn (37) can be rewritten as

x x ~ ,

L anEn(x)+ L bnFn(x)+ L cnGn(x)+ L dnHn(x) = - U(x)
11=1 !1=! n=l n=l

1161

(C3)

(0.1)

"£ Z f. 7_

L aJn(x) + L bnJn(x) + L cnKn(x)+ L dnLn(x) = - V(x) for (XI ~ X ~ x,) (0.2)
n=! 1/=1 11=1 n=]

I :f X 1.

L anMn(y) + L bnNn(y) + L cnOn(y) + L dnP,,<y) = - W(y)
n=l 11=1 11=1 n=l

(0.3)

J. X X x

L anQn(Y)+ L bnRn(y) + L CnSn(y) + L d"Tn(Y) = -Z(y) for (YI ~ Y ~ y,) (0.4)
n=l 1/=\ n=1 1/=\

where En(x), Fn(x), ... , Z(y) are known functions and coefficients an' bn, Cn and dn are unknown and remain to be
determined.

A set of functions Bn(y) that satisfy the orthogonality condition
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(D.S)

can be constructed from a given set of arbitrary functions, say R,,(y), such that

"
S,,(y) = L (Mi,,1 M",,)R,(y)

i= I

where Mi" is the cofactor of the element di" of D", which is defined as

(D.6)

D,,=

d" d" d,,,

d" , d", = rr, Ri(y)R,,(y) dy.
Jr]

(D.7)

It is evident that N" in eqn (D.S) is different from N,,(y) in eqn (D.3). Representing the second series in eqn (D.4)
by the orthogonal series S,,(y) with coefficients e", the following reiationships are derivable

" x

L b"R,,(y) = L e"B,,(y)
n= \ n~ I

f. f 7_

=-Z(y)~ L a"Q,,(y)~ LC"S,,(y)- LdJ,,(y).
n= 1 n=- I 1I~ I

The second equality yields

e" = - (lIN,,)L' {Z(y) +i~ a,Q'(y)

+ ,t, CiSi(y) +"t, diT,(y) }S,,(y) dy

and considering eqn (D.6), the first equality shows

-I: '-l.-

bn = I YmQi+ I b~:)Ci+ I b;l7'ldi+b~I()}
i= 1 i'-'-- 1 n=-c I

with

6:,:) = ~t [M",/(N,M II )}LS;(y)B,(y)dy

6:,'i} = ~t {M,,;/(N)M j,)} r" Z(y)B,(y)dv.
1-0 ..L'i

Substituting eqn (D.IO) into eqn (D.3), the equality now becomes

X -to -I.

L~~~=-L~~~~L~~~~W~
11= I /l ~ I II~-' 1

with

x

M;,(y) = M,,(y)+ L y",N;(y), O~(y) = O,,(y)+ L 6;,!'N;(y),
i~ [ i= I

(D.8)

(D.9)

(D. I0)

(D.II)

(D.12)

I.

P;,(y) = P,,(y) + L 6:Y N,(y),
i= I

~

W(yl = W(y)+ L 6io I N/V)·
i= I

(D.13)

Using the same procedure, the orthonormal function C,,(y) is constructed from M;,(y) as
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Cn(y) = I (Li"iLn,,)M;()
;= I

where Lin is the cofactor of the element ein of An, which is defined as

1163

(0.14)

~!I =

enn

f'·
, em = ,,' M;(y)M;(y) dy.

"

(0.15)

Using eqns (0.12) and (0.14), coefficients a" can be expressed by c, and d, as follows

J_ "J..

an = L ck(~1) + I dk(~r) + (;/1)
k= I k~ I

with

dO) ~ I L '(K L )\i" W'(.J') C, (,.J') d.)·
l,,, = - i'::" ( nil j ,/ !"

K = i',' C
2
(J')dv..I ).-

"

Substituting eqn (0.16) into eqn (0.10), we obtain the next relation

"J_ -I_

bn = I C,I:~l' + I d,I:~~) + [,:,0)
k= 1 ,1.= 1

with

(0.16)

(0.17)

(0.18)

x

£;l~: = o~l} + L {'ni'i}l ~
1= 1

x

£:1°) = l5~OI + L i'ni'i[).
i= I

Y

t:~r) = o;,i '+ I A/ni(},,:2)
i _~ 1

(0.19)

Coefficients an and bncan now be represented by c" and d" through eqns (0.16) and (0.18). Replacing coefficients
an and b" in eqns (0.1) and (0.2) with eqns (0.16) and (0.18), the equality becomes

with

x x.

I c"G:(x) + I d"H:(x) = - U'(x)
n= I n= 1

x x

I c"K:(x) + I d"L:Cx) = - V'(x) for (x, :;;; x:;;; X2)
n= I n= I

x

G:(.>:) = G,,(x)+ I {(~1'Edx) H:,l'F,(x)}
k=l

H:Cx) = H,,(x) + I {(~f'E,(x)H~f'F,(x)}
1.:=1

Y.

K:(x) = K"(x) + I {(~1'/dx)+6~l'Jdx)}
k=1

Y.

L:(x) = L"(x)+ I {(~~'/dx)+I:~f'Jdx)}
k=l

Y

U*(x) = U(x)+ I WO'E,(x)+f.\O'Fdx )}
k=1

(0.20)

(0.21)
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V*(x) = V(x)+ L WOII,(x)+etOIJ,(x)}.
.1.=1

(D.22)

The same procedure is repeated. Letting P:(x) be a set of functions satisfying orthogonality condition

f" P:(x)P:(x)dx = N"i5m", N" = f" {P:(x)}'dxJ\I J\l

P:(x) can now be constructed from a set of functions L;:'(x) as

P:(~) = L (M:;M:,,)L~(x)
i= I

where Mt, is the coefactor of the element dt, of D:, which is defined as

dr, dr, dr"

D:= df,
dt, = [, L~(x)L:(x)dx.

,.,.\;

d:, d:'l

(D.24)

(D.25)

(D.26)

Representing the second series in eqn (D.21) by the orthogonal series P:(x) with coefficients e:, the following
equations can now be given

7_ y_ x

L d"L:(x) = L e:P:(x) = - V*(x) - L c"K:(x).
11= 1 n= I 11= I

Using the second equality in eqn (D.27), coefficients e: can be expressed as

The first equality yields the following expression

dn = L ~'~iCi +6~
/1-- I

with

Substituting eqn (D.29) into eqn (D.20) reduces to

x ,

L c"G,~(x) = - U*(x) - L i5~H~(x)
n= I i= \

with

x

G:*(x) = G:(~) + L i,~,H~(x).
i= 1

Finally, coefficients c" can be determined by

Y.

C" = L q'/(S:,;st)
1=/1

with

(D.27)

(D.28)

(D.29)

(D.30)

(D.31)

(D.32)

(D.33)
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qr=(~I!R~)rU*(x)Q;'{x)dx, Q;'{x) = i~(S:'!StlG;:'*(X)

where Sj;, is the cofactor of the element ej. of the determinant l1:
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(D.34)

ej. = f, Gj"(x)G;:'*(x) dx, (D.35)

and Q;'{x) are the orthogonal functions that satisfy

Ix Q:::(x)Q:(x) dx = R:fJmn , R: = r" {Q:(x)} ' dx.
·\1 J\l

Coefficients C" d" G" bn are calculated using eqn (D.33), (D.29), (D.16) and (D.IS), respectively.

(D.36)


